Killing of cryptococcus neoformans by Staphylococcus aureus: the role of cryptococcal capsular polysaccharide in the fungal-bacteria interaction.

نویسندگان

  • Fumito Saito
  • Reiko Ikeda
چکیده

Microbes compete for the environmental niche which is their host. To investigate the effects of a pathogenic bacterium on invasion and colonization by a pathogenic yeast, Cryptococcus neoformans was co-cultured with Staphylococcus aureus. We found that the number of colony forming units of C. neoformans was decreased by Staphylococcus aureus. In contrast, the viability of Candida albicans was not affected. Under the microscope, wild-type C. neoformans cells were shown to be surrounded by S. aureus, while cells of a capsuleless mutant of C. neoformans were not. C. neoformans was not killed when a membrane separated it from S. aureus in co-culture. Killing was confirmed by staining with cyanoditolyl tetrazolium chloride: S. aureus stained red, indicating viability, while C. neojormans did not stain, indicating lethality. The in situ terminal deoxynucleotidyl transferase-mediated dUTR nick end labeling (TUNEL) assay indicated cell death with fragmentation of DNA of C. neoformans. Capsular polysaccharide from C. neoformans inhibited the killing. Treatment of the crude polysaccharide with protease increased the inhibition. The protective activity resided in the glucuronoxylomannan (GXM) fraction, although the concentration required for the inhibition was high. These results suggest that S. aureus kills C. neoformans by a process that involves attachment to the cryptococcal capsule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy.

One of the most troublesome medical problems today is infection of prosthetic devices with organisms that form polysaccharide biofilms. This combined with increasing antimicrobial drug resistance is making many infectious diseases incurable. Cryptococcus neoformans is a human-pathogenic fungus that has a polysaccharide capsule and can form biofilms in prosthetic medical devices. We developed a ...

متن کامل

Cryptococcus neoformans. 3. Inhibition of phagocytosis.

Isolated nonhydrolyzed cryptococcal polysaccharide is a rather specific potent inhibitor of the phagocytosis of Cryptococcus neoformans by human leukocytes in vitro. When an encapsulated strain of C. neoformans was cultured in the nonencapsulated state, the rate of phagocytosis was three times greater than when the encapsulated form was used. Our theory that capsular material plays a role in th...

متن کامل

Immunoglobulin G3 blocking antibodies to the fungal pathogen Cryptococcus neoformans

Vaccination and infection can elicit protective and nonprotective antibodies to the fungus Cryptococcus neoformans in mice. The effect of nonprotective antibodies on host defense is unknown. In this study we used mixtures of protective and nonprotective monoclonal antibodies (mAbs) to determine if nonprotective mAbs blocked the activity of the protective mAbs. Antibody isotype and epitope speci...

متن کامل

A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis.

Cryptococcus neoformans, which causes fatal infection in immunocompromised individuals, has an elaborate polysaccharide capsule surrounding its cell wall. The cryptococcal capsule is the major virulence factor of this fungal organism, but its biosynthetic pathways are virtually unknown. Extracellular polysaccharides of eukaryotes may be made at the cell membrane or within the secretory pathway....

متن کامل

A Eukaryotic Capsular Polysaccharide Is Synthesized Intracellularly and Secreted via Exocytosis□D

Cryptococcus neoformans, which causes fatal infection in immunocompromised individuals, has an elaborate polysaccharide capsule surrounding its cell wall. The cryptococcal capsule is the major virulence factor of this fungal organism, but its biosynthetic pathways are virtually unknown. Extracellular polysaccharides of eukaryotes may be made at the cell membrane or within the secretory pathway....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical mycology

دوره 43 7  شماره 

صفحات  -

تاریخ انتشار 2005